Studydroid is shutting down on January 1st, 2019



keywords:
Bookmark and Share



Front Back
sinhx
1/2 (ex- e-x) D: ARN R: ARN
coshx
1/2 (ex+ e-x) (not one to one / parabolic) D:[0,∞) R:[1,∞) for x≥0
tanhx
sinhx/coshx or (ex - e-x)/(ex+ e-x) or (e2x-1/e2x+1)
d/dx sinhx
coshx
d/dx coshx
sinhx
d/dx tanhx
1-tanh2x or sech2x
d/dx cothx
1-coth2x or -csch2x
d/dx cschx
-cothx cschx
d/dx sechx
-tanhx sechx
d/dx arcsinhx
1/√(x2+1)
d/dx arcoshx
1/√(x2-1)
d/dx arctanhx
1/(1-x2)
d/dx arcschx
-1/[|x|√(1-x2)]
d/dx arcsechx
-1/[x√(1-x2)]
d/dx arcothx
1/(1-x2)
Identities sinh(-x)= - sinhx cosh(-x)= coshx cosh2x - sinh2x = 1 1 - tanh2x = sech2x  
Identities (continued) sinh(x+y) = sinhx coshy + sinhy coshx cosh(x+y) = coshx coshy + sinhx sinhy
arcsinhx
ln (x + √(x2+1))
arcoshx
ln (x + √(x2-1))
arctanhx
1/2 ln (1+x/1-x)
arcothx
1/2 ln (x+1/x-1)
x of y cards